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ABSTRACT

Many impacts associated to environmental flows strongly depend on the depth of the aquatic body, such as thermal and hydraulic

stratifications, which can lead to formation of layers with different concentrations of oxygen and nutrients. To simulate such problems

numerically, for many applications, the most efficient approach is a laterally averaged model (2db), rather than a 3d approach. This

paper presents a laterally averaged Finite Element model applied to environmental flow simulations and temperature/pollutant transport

to predict effects of stratification, in the context of hydroelectric reservoirs. The work includes the development of computational tools

for terrain data manipulation and mesh generation. A validation procedure against experimental results is shown, as well as a numerical

simulation of an environmental flow.
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1 INTRODUCTION

Intense industrialization of emerging countries has placed an in-
creasing burden on the environment [6], and our awareness on
the relationship between pollutant transport and environment im-
pact has enhanced the role played by prediction methods on this
class of problem. Many environmental phenomena related to wa-
ter resources are strongly dependent on the depth of the aquatic
body, such as thermal and/or hydraulic stratification and organic
material transport. Changes of the main parameters associated to
these problems along the reservoir depth are much more signifi-
cant than the changes along parallel to the surface.

Concerning stratified flows, aquatic bodies with low velocity
flows are common to several environments, such as hydroelec-
tric reservoirs, water cooling pools and lakes, and have favorable
conditions for the formation of thermal stratification. Addition-

ally, thermal stratification is influenced by other variables, and
can sometimes be broken, causing many perturbations in local
ecosystems. This may result in the accumulation of poor qual-
ity water in the lower layers, many times in anaerobic conditions,
configuring a region of low oxygen concentrations and high acid-
ity. Wind and low temperatures at the surface, for instance, may
brake the stratification, pushing the bad quality water to the top,
causing negative ecological impacts that influence local fauna.
Many times, specially in deep water reservoirs, the stratification
acts as a barrier against the water from the bottom to rise toward
the surface, being a favorable factor to water pollution control.

1.1 Modeling

Models for predictions of environmental impacts play an increas-
ing role on the study and control of ecological systems wealth.
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Mathematical models for water bodies like hydroelectric reser-
voirs can be classified taking into account the number of space
dimensions, i.e. 3d, 2d, 1d and 0d. In the particular case of flows
where the depth direction is considerably more relevant than the
longitudinal and transverse directions, 2d approaches are often
more suitable for several environmental flows than 3d models,
because they provide, in many applications, predictions with the
required accuracy in short processing times compared to the re-
spective 3d simulation. In the specific case of narrow estuaries,
the most appropriate 2d model is derived by integrating across
the reservoir [3, 9], which leads to the laterally averaged equa-
tions of motion (2db).

This paper presents a laterally averaged Finite Element
model applied to environmental flow simulations and tempera-
ture/pollutant transport to predict effects of stratification, in the
context of hydroelectric reservoirs. The work includes the devel-
opment of computational tools for terrain data manipulation and
mesh generation. The system of equations is numerically solved
by the Finite Element Method, where the velocity and pressure
fields are decoupled by the discrete Projection Method. Space
domain is discretized by the standard Galerkin method, and time
domain is discretized by a first order semi-Lagrangian method.
Computational codes have been developed under the Object Ori-
ented Paradigm, using C++ language.

2 MESH GENERATION

This section described the mesh generation procedure, which
stars from reading the terrain data. The terrain files can be under
two different data structures: raster terrain type (a grid of equally
spaced (x, y, z) coordinates) or shape terrain type (a set of level
curves).

In what follows, the water body will be interpreted as a
hydroelectric reservoir. In order to capture the hydrodynamic and
thermal processes along the reservoir depth by a two-dimen-
sional approach the finite element mesh must be a vertical mesh,
along a certain longitudinal path. The algorithm for mesh gener-
ation is designed for irregular terrain geometries combined with
hydrographic maps. Topological data are obtained from a set of
level curves that provides the reservoir bottom coordinates and
the breadth at each point of the vertical mesh, while the hydro-
graphic maps provides the horizontal (or longitudinal) direction.
These maps contain the coordinates associated to the riverbed,
where hydrodynamic effects are probably more relevant.

Figure 1 shows a top view, in the left side, of the terrain data
or a selected region combined with the hydrographic map, and,

in the right side, the riverbed line (longitudinal direction). The
vertical mesh – referred to as 2db mesh – will be generated over
the riverbed (highlighted blue line), which provides bottom coor-
dinates. The orange lines represent the reservoir margins and are
used in the calculation of the breadth.

After gathering the necessary information, the first stage is
the triangulation on the terrain data to generate the terrain mesh
(not the vertical mesh yet). This step allows interpolation of terrain
coordinates at any point of the reservoir, which will be useful for
bottom coordinate and breadth evaluation. The second step con-
sists on projecting the riverbed line on the reservoir lower surface.
Now, vertical triangulation can be performed to assemble the ver-
tical mesh (third step). Figures 2 to 5 illustrate the process.

Evaluation of the breadth for each point of the 2db mesh
can now be performed. In the presented model, each breadth Bn

associated to node n is the sum of the distance from the node
to left side, BL

n , and to the right side, B R
n . That is,

Bn = BL
n + B R

n . (1)

This procedure is shown in Figure 6.

3 MATHEMATICAL MODEL

The equations that constitute the model are obtained by later-
ally integrating the incompressible Navier-Stokes equations and
transport equation, as follows

∫

B

[
ρ

Dv̂

Dt
− ∇ ∙ T − ρg

]
db = 0, (2)

∫

B

[
∇ ∙ v̂

]
db = 0, (3)

∫

B

[
Dĉ

Dt
− ∇ ∙

(
D∇ ĉ

)
]

db = 0. (4)

In the above equations the del operator, represented by ∇ , is used
as divergent and gradient operators. The velocity field is repres-
ented by v̂ and ĉ is a scalar field, which can be temperature or
a generic passive concentration. T is the Cauchy stress tensor,
ρ is the density, g represents the gravity acceleration, given by
g = gk, where g is the modulus of gravity acceleration, and
D is the diffusivity coefficient. W represents the local breadth.
The three coordinate directions are denoted by s (longitudinal
direction), z (vertical direction) and b (lateral direction). That is
why the integration element in the above equations is db. Af-
ter integrating, and taking into account that the stress tensor is
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Figure 1 – Superposition of terrain and hydrographic data.
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Figure 2 – Terrain mesh.

Figure 3 – Terrain mesh and projected riverbed.

Figure 4 – Superposition of terrain mesh and vertical mesh.
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Figure 5 – Vertical mesh (2db mesh).

Figure 6 – Breadth calculation.
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given by

T =







τss τsz τsb

τzs τzz τzb

τbs τbz τbb





 , (5)

we arrive at the 2d laterally averaged equations of motion and
transport [8] (in its dimensionless form, expanded in s and z
coordinates):

∂u

∂t
+ u

∂u

∂s
+ w

∂u

∂z

=
1

ρB Re

[
∂(Bτss)

∂s
+

∂(Bτzs)

∂z

]
,

(6)

∂w

∂t
+ u

∂w

∂s
+ w

∂w

∂z

=
1

ρB Re

[
∂(Bτzs)

∂s
+

∂(Bτzz)

∂z

]
+ g,

(7)

∂(Bu)

∂s
+

∂(Bw)

∂z
= 0, (8)

∂c

∂t
+ u

∂c

∂s
+ w

∂c

∂z

=
1

B ReSc

[
∂

∂s

(
B D

∂c

∂s

)
+

∂

∂z

(
B D

∂c

∂z

)]
,

(9)

where Re denotes the Reynolds number and Sc is the Schmidt
number, defined by Sc = ν/D, with D being the diffusion coef-
ficient of the scalar, ν = μ/ρ, where ν is the kinematic viscosity
and μ is the dynamic viscosity. The unknowns u and v represent
the mean longitudinal and vertical velocity components, respec-
tively. Note that some terms coming from the integration proce-
dure were neglected. If v̂ = ûi + ŵk is the original velocity
field and v = ui + wk is the laterally averaged velocity field,
the components of v are obtained by

u =
1

B

∫ B

0
ûdb, (10)

w =
1

B

∫ B

0
ŵdb. (11)

Similarly, the averaged concentration and pressure scalar fields
are respectively given by

c =
1

B

∫ B

0
ĉdb, (12)

p =
1

B

∫ B

0
p̂db. (13)

Considering newtonian incompressible fluid model, the
stress tensor can be expressed as

T = −p1 + μ
[
∇v + (∇v)T

]
, (14)

where p stands for the laterally averaged pressure field. Multiply-
ing Eqs. 6 to 9 by B, considering Eq. 14 and taking into account
that, assuming constant viscosity, ∇∙(∇v)T = ∇ (∇ ∙ v) = 0,
we arrive at the 2DB momentum equations:

B
(

∂u

∂t
+ u

∂u

∂s
+ w

∂u

∂z

)
= −

1

ρ

∂(Bp)

∂x

+
ν

Re

[
∂

∂s

(
B

∂u

∂s

)
+

∂

∂z

(
B

∂u

∂z

)]
,

(15)

B
(

∂w

∂t
+ u

∂w

∂s
+ w

∂w

∂z

)
= −

1

ρ

∂(Bp)

∂z

+
ν

Re

[
∂

∂s

(
B

∂w

∂s

)
+

∂

∂z

(
B

∂w

∂z

)]
+ Bg.

(16)

4 NUMERICAL FORMULATION

The Finite Element Method is employed to solve Eqs. 15, 16, 8
and 9. Let these equations be defined in a domain � and let S be
the subspace defined by

S = H 1(�)m =
{
v = (v1, . . . , vm)|vi ∈ H 1(�),

∀ i = 1, . . . , m
}
.

(17)

where H 1(�) the Sobolev space of first order derivative func-
tions square integrable over �. Let L2(�) be a space of infinite
dimension so that

L2(�) =
{
v : � → R |

∫

�

v2d� < ∞
}

. (18)

Introducing the weight functions w, q and r , the application of
Finite Element Method consists of finding solutions v ∈ S,
p ∈ L2 and c ∈ L2 such that

∫

�

B
Dv

Dt
∙ wd� +

1

ρ

∫

�

Bp (∇ ∙ w) d�

+ ν

∫

�

B∇v : ∇wd� −
∫

�

Bg ∙ w = 0,

(19)

∫

�

(∇ ∙ v) Bqd� = 0, (20)

∫

�

B
Dc

Dt
rd� +

1

ReSc

∫

�

(B D∇c) ∙ ∇rd� = 0, (21)
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where τ L and τ R are left and right shear stress vectors, and
the operator (:) is the tensor inner product. The semi-discrete
Galerkin method is employed for discretization of Eqs. 19, 20 and
21, in which time derivatives remain continue. The domain � is
discretized in a triangular finite element mesh. Unknowns u, w,
p and c are approximated by

û(s, z, t) ≈
∑

Nu

N u
n (s, z)un(t), (22)

ŵ(s, z, t) ≈
∑

Nw

Nw
n (s, z)wn(t), (23)

p̂(s, z, t) ≈
∑

Np

N p
n (s, z)pn(t), (24)

ĉ(s, z, t) ≈
∑

Nc

N c
n (s, z)cn(t), (25)

where N u
n , Nw

n , N p
n and N c

n are the so-called shape functions.
The node value of each unknown is represented by un , wn , pn

and cn . The number of nodes of velocity components, pressure
and scalar are denoted by Nu , Nw , Np and Nc. Integrations of
each term over �e for all elements yield

Msu̇ +
1

B Re

[
(2Kss + Kzz) u + Kszw

]

+
g

B
Gs Bp = 0,

(26)

Mzẇ +
1

B Re

[
Kzsu + (Kss + 2Kzz) w

]

+
g

B
Gz Bp = 0,

(27)

Dsu + Dzw = 0, (28)

Mcċ +
1

ReSc
(Kss + Kzz) c = 0. (29)

Note that the substantive derivatives of velocity components and
scalar are respectively represented by u̇, ẇ, and ċ, and are time
discretized by a first order Semi-Lagrangian scheme, which allows
the use of large time steps without limiting the stability, in contrast
to the Eulerian framework. In principle, the choice of the time step
is only limited by numerical accuracy. However, for large time
steps, instabilities may appear when trajectories cross and par-
ticles “overtake” others, due to inaccuracy of the computed tra-
jectories. If 4t is a finite time difference, the Semi-Lagrangian
scheme approximates the convective term in a time step m + 1
in the node n by

Dvn

Dt
≈

vm+1
n − vm

d

4t
, (30)

Dcn

Dt
≈

cm+1
n − cm

d

4t
, (31)

where the subscript d (from departure) refers to the space point
from which the particle came. Time and space discretization of
Eqs. 26 to 28 gives rise to an algebraic linear system of the form

[
B − 4 tG

D 0

][
vm+1

pm+1

]

=

[
am+1

v

am+1
p

]

. (32)

Matrices B, D and G are given by

B = M +
4t

Re
K , (33)

D =

[
Ds 0

0 Dz

]

, (34)

G =

[
Gs 0

0 Gz

]

, (35)

where matrices M and K are

M =

[
Ms 0

0 Mz

]

, (36)

K =

[
2Kss Kzs

Ksz 2Kzz

]

. (37)

Velocity and pressure fields are decoupled by the Projection
Method [10]. The linear systems are solved by PCG (Precondi-
tioned Conjugate Gradient) for velocity and concentration fields
and GMRes (Generalized Minimum Residual) for pressure field,
employing PETSc library [11].

5 CODE VALIDATION

To validate the model and the code, an experimental simulation
of a density current problem [4] was carried out, since this is es-
sentially a 2d flow. A flume (450 cm long, 30 cm high and 33 cm
wide) was filled (up to 25 cm high) with two fluids of different
densities ρ (see Fig. 7): one half with a solution of salt in water
(ρ = 1020 kg/m3) and the other with water (ρ = 980 kg/m3).
The heavier fluid also received an amount of potassium perman-
ganate (KMnO4) as tracer. The two fluids were initially sepa-
rated by a vertical wall, when the wall was suddenly removed,
allowing the two fluids to mix. Figure 8 shows synchronized
frames of the mixing process, experimental and numerical, taken
at times t = 2, 3, 5, 7, 9, 12, 15 and 17 s.

The simulation showed good timing results. The mixing pro-
file can be improved by mesh refinement, since each code run
took approximately 20 minutes to attain time t = 17 s.

Journal of Computational Interdisciplinary Sciences, Vol. 2(3), 2011



“main” — 2013/5/6 — 12:54 — page 168 — #8

168 2DB NUMERICAL SIMULATIONS OF INCOMPRESSIBLE ENVIRONMENTAL FLOWS

Figure 7 – A picture of the flume used in the experiment.

t = 2 s t = 3 s

t = 5 s t = 7 s

t = 9 s t = 12 s

t = 15 s t = 17 s

Figure 8 – Validation of the numerical model represented by Eqs. 26 to 29 and the FEM code employed for solving these equations. The figure presents a comparison
between the experimental result of mixing of two fluids with different densities in the flume shown in Figure 7 and the respective numerical result. At each time, the
upper frame is a picture taken in the actual flume and the lower one is the numerical result, at the same time. The two fluids are initially separated by a vertical wall at
the middle of the flume length. The wall is removed, allowing the mixing of the two fluid.
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Figure 9 – Perspective view of 2db mesh.

Figure 10 – Breadths along the domain.

6 RESERVOIR SIMULATION

In this section, numerical results of a reservoir simulation are
presented. Water inflow carries a certain solute concentration into
the reservoir, with 1 m/s as inflow velocity. The solute inflow con-
centration value (1 kg/m3) was chosen so that strong gravity cur-
rents could develop close to the lower surface of the reservoir.
The reservoir longitudinal length is 5,962 m, with 800 m of depth,
and is discretized in a mesh with 1,503 vertices and 2,736 ele-
ments, as shown in Figure 9.

The reservoir breadth is plotted in Figure 10.

The platform for the simulations was a two 1.60GHz Intel

Xeon processors computer with 16GB of RAM. Simulation of

2 hours and 38 minutes of real time flow took about 20 CPU min-

utes. Figures 11.a to 11.d show the solution of the concentration

and velocity fields at four different times t . The vertical mesh sim-

ulation is presented in the longitudinal-vertical plane.

Note that, despite the larger density, part of the income con-

centration flows close to the surface, as an effect of the breadth.

Other portion of the income falls to the bottom, forming a vortex

in the scale of the reservoir depth.
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a)

b)

Figure 11 – (a) t = 39 min; (b) t = 1h20min.

7 CONCLUSION

Computational code tests and experimental validation have shown
that the model is capable to simulate important depth dependent
environmental flows. Additionally, the 2d approach has proved
to be an efficient strategy concerning simulated time per pro-
cessing time. The low computational cost allows the use of very
fine meshes, enhancing the quality of numerical results. The lat-
erally averaged model (2db) and depth averaged model (2dh)–
widely used in shallow water simulations [5] – are complementary
models, which means that one can obtain satisfactory informa-
tion by combining 2db and 2dh simulations, without the compu-
tational penalty of a heavy 3D simulation. The tool presented in
this paper also counts with a complete GUI (Graphical User Inter-
face), where the user can manipulate all terrain, hydrographic and
mesh data, making the simulation set up easier.
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