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ABSTRACT

Computational optical sectioning microscopy is a powerful tool to reconstruct three-dimensional images from optical two-dimensional
sections of a biological specimen acquired by means of a fluorescence microscope. Due to limiting factors in the imaging systems, the
images are degraded by both the optical system and detection process. Each of the two-dimensional section of the three-dimensional
data set are blurred by contributions of light from other out-of-focus planes. Besides, they are also corrupted by noise due to quantum
fluctuations of light. In this work we present a method to perform the restoration of three-dimensional data obtained by fluorescence
microscopy. The algorithm consists of the use of a noise reduction procedure based on the Anscombe transformation followed by the
Richardson-Lucy deconvolution algorithm. Results showed an improvement on deconvolution performance when using phantoms

and real cell images.

Keywords: computational data analysis and simulation in general sciences, computational optical sectioning microscopy, deconvo-

lution microscopy, poisson noise, Anscombe transformation.

1 INTRODUCTION

The visualization of the proper three-dimensional (3D) image of
a biological specimen is important in many specific problems
because the cell structure and its function can be strongly corre-
lated. This aim can be achieved with the use of the computational
optical sectioning microscopy (COSM) technique. In COSM,
a 3D image is formed by stacking a series of two-dimensional
(2D) images that are acquired by using light microscopy. With
the use of a widefield or confocal microscope it is often used in
fluorescence microscopy where the data represents the fluores-
cence concentration [1].

However, the 3D images acquired using COSM are degraded
by the microscope optics. Indeed, each slice of the 3D image is
blurred, i.e., it has contributions of light from other out-of-focus

planes [1, 2]. As a result, the light originated from a point in the
focal plane is not exactly imaged as a point. Also, the Fourier op-
tics theory demonstrates that there is a cut-off spatial frequency
which is directly determined by the shape and size of the limiting
pupil in the optical system. In this sense, some image content are
lost during image acquisition [3].

Besides the blurring due to the microscope optics, there are
several sources of noise that decrease the quality of the images
[1, 2]. As a result of the many problems that arise when imaging
living cells (for instance, to avoid photobleaching), the images
are often recorded under low-level light. In these situations, the
images are quantum limited and they are corrupted by Poisson
noise. Other noise sources come from the charged-couple device
(CCD) camera systems that are usually used to record the images.
For instance, thermal noise dug to electronic devices.
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Since the formation of an image changes the recorded infor-
mation content with respect to that of the original object, there is
interest in processing images so that the results closely match the
real object. The algorithms that allow a reconstruction of the dis-
torted images and the recovery of frequencies lost in the acquisi-
tion process are called restoration or super-resolution restoration
algorithms [3].

The problem of recovering the specimen function (in this case,
the fluorescence concentration) from the observed blurred and
noisy image is often referred to as deconvolution microscopy.
QOver the last 40 years, several different algorithms with different
complexity and processing time have been developed to solve this
problem[1]. Linear, non-iterative, true 3D deconvolution methods
such as the regularized linear least squares (RLLS) algorithm [1]
are the fastest, however, they cannot recover the missing Fourier
components. In principle, non-linearity is necessary in order to
recover the missing frequencies as was shown in reference [1, 3].
However, if one desires a first estimate, the RLLS is able to give
a good first approximation of the true image. Better approxima-
tions can be obtained with iterative and non-linear algorithms (for
acomparison of several such methods see references [1]and [2]).
One widely used method is the maximum likelihood expectation
maximization algorithm (MLEM) applied to microscopy by sev-
eral investigators [4, 5]. Algorithms based on the MLEM method
provide a better combination of robustness to noise and super-
resolution capabilities (i.e., they can recover some of the missing
frequencies) than algorithms based on different approaches.

It is important to note that most of the algorithms we have
found consider an additive signal-independent noise model in its
derivation. Few and more sophisticate deconvolution methods are
proposed under the assumption of a Poisson noise model which
is more appropriate in fluorescence microscopy. Indeed, the al-
gorithm that is able to produce the best visual results in COSM
is the MLEM which is derived under the assumption of a photon
count noise. This algorithm was previously studied in many other
applications where the Poisson noise is dominant. For instance,
it was proposed by Richardson and Lucy (RL) [6, 7] for astronom-
ical data deconvolution.

In this work we propose a pre-processing stage to reduce
the Poisson noise in fluorescence optical microscopy before the
restoration process using the RL algorithm. In order to accom-
plish that we use the non-linear Anscombe transformation and
its optimum inverse [8]. The iterative RL algorithm is applied
after noise minimization.

The results of the method for simulated data are compared
with the ones obtained by the original algorithm. The method

improved the results by obtaining higher results in improve-
ment in signal-to-noise ratio and faster convergence than the
original algorithm.

2 IMAGE-FORMATION MODEL

By considering the blurring as a linear, space-invariant operator
and in the absence of noise, the 3D observed image b(x, y, z)
in fluorescence microscopy is given by [1]

b(x’)hz)=f(xvy,z)*h(%y,2), (1)

where f'(x, y, z) represents the fluorescence concentration of
the real object (specimen) over all the spatial dimensions and
h(x, y, z) is the 3D incoherent point spread function (PSF) of
the microscope. The symbol * stands for a 3D convolution be-
tween 1'(x, y, z) and A(x, y, z). We can write equation (1) in
the Fourier domain as

Bu,v,w)=Fu,v,w) - Hu,v,w), 2)

where B(u, v, w), F(u, v, w)and H (u, v, w) are the Fourier
transform (FT) of the blurred observation, of the real image and of
the PSF of the optical system, respectively. It can be shown that
H (u, v, w) —the optical transfer function (OTF), is zero valued
for most of the frequencies in the Fourier domain [4]. This is due
to the circular aperture of the microscope and in the region where
it has non-zero values it works as a low-pass filter and in the re-
gions where it has zero values it removes the image content in that
region. In this sense, from equation (2) we can see that the ob-
served image has lack of information that needs to be recovered.

Moreover, the repeated exposures needed to generate the 3D
data will bleach the fluorophores into the specimen. The more the
time to get the image, the more significant the differences between
the intensities of images at the beginning and the end of the stack
of 2D images. This effect is known as photobleaching and it is
stronger when the specimen is a living cell, which does not re-
spond well to bleach retardants. Although one can bleach correct
the stacks after the acquisition, the effect of photobleaching can
be minimized (not eliminated) with a short exposure time. How-
ever, the shorter the time of exposure, the lower the level of photon
count we have. Under this condition, the images are subject to a
kind of noise that is dependent on the signal and that can be well
modeled by a Poisson distribution.

Therefore, considering a discrete version of equation (1), a
voxel of the blurred and noisy observed image is given by

gr = Poisson{by}, 3)

where Poisson{-} represents a Poisson random process and by,
is an element of the discrete version of b(x, y, z).
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3 THE ANSCOMBE TRANSFORMATION

The proposed method for deconvolution microscopy consists
of reducing the Poisson noise in the observed image before the
application of the Richardson-Lucy algorithm. Since the Poisson
noise is signal dependent, we propose the use of the Anscombe
transformation to be able to use more standard methods for noise
removal.

The Anscombe transformation (AT) transforms the signal de-
pendent Poisson noise into an approximately Gaussian, additive,
signal independent noise with zero mean and unity variance [8].

The AT on the random variable g is given by

- /. 3 -
up =2 gk+§=sk+”k, (4)

where 72 is an additive noise that is approximately independent
of s¢ and sy is the noiseless signal on the Anscombe domain.
It can be shown that E[7z] >~ 0 and Var[ng] >~ 1.

From these facts, after the AT, it is possible to use well-known
techniques for reducing signal independent additive noise by op-
erating on the random variables . For instance, we suggest
using the pointwise Wiener filter that is optimum under the min-
imum mean square error criteria. After the noise smoothing, we
return to the original variable applying the optimal inverse AT. For
a detailed explanation of the optimal inverse see the reference [8].

4 THE RICHARDSON-LUCY ALGORITHM

The Richardson-Lucy (RL) algorithm is an iterative procedure to
find the maximum-likelihood estimate 7'(x, v, z) of f(x, y, )
given the blurred and noisy observation. It was originally pro-
posed by Richardson [6] and Lucy [7] and also applied in COSM
by several authours [4, 5]. Later, it was demonstrated that the al-
gorithm was able to partially recover the missing frequency com-
ponents [2, 4].
An iteration of the RL algorithm is given by

gx,y,2)
f:’l(xvyvz) *h(x’ysz)

Frr1(e,p,2) = {[ ] - h(x,y,z)}

(%)

X fn(x,y,Z),

where g(x, v, z) is the blurred and noisy observation.

Since the RL algorithm tends to the ill-posed maximum-
likelihood solution we also consider a regularized approach based
on a total-variation penalization criteria. According to this crite-
rion, the algorithm attempts to preserve edges while smoothing
the image content.
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Given an initial estimate, an iteration of the total variation
Richardson-Lucy (TVRL) algorithm is given by

8. y.2) i|*h(x y z)}
fn(vaaZ)*h(xay,Z) e

Jn@.3.2) (6)
1 - adiv [ Lty
|V a2

where div is the divergence operator and A a constant.

f;’l-f-l(-xsy’z) :{[

X

5 RESULTS AND DISCUSSIONS

The proposed algorithm consists of reducing the Poisson noise
in the observed image before the application of the Richardson-
Lucy procedure. To evaluate the efficiency of the method a series
of experiments were carried out using Monte-Carlo simulations.
A 3D phantom image was generated which represents the ac-
tual optical density of a real microscopic structure. In order to
simulate a standard non-confocal microscope the phantom im-
age was convolved with a theoretical PSF. The PSF was calcu-
lated with the Gibson and Lanni model [9] and it corresponds
to a 60X oil-immersion objective lens with a numerical aper-
ture of 1.4. We consider that the phantom has a fluorescence
wavelength of 535 nm and the pixel size in the x and y direc-
tions is 0.094 microns and in the z direction it is 0.25 microns.
Using the blurred image, 50 realizations of a Poisson random
process were conducted, and a set of blurred and noisy images
were generated.

In all experiments, to avoid boundary artifacts all images
were extended and padded by a reflected version of them [10].

Four cases were considered in the simulations. First, the RL
and the TVRL algorithms were applied on the blurred and noisy
images without any preprocessing step to reduce the Poisson
noise. Later, the RL and the TVRL algorithms were applied consid-
ering the procedure based on the AT for noise reduction. For each
restored image a performance measure was computed to quantify
the restoration results. It is based on the improvement in signal-
to-noise ratio (ISNR) which is defined by the equation (7).

If(x.p.2) — g(x, p,2)|]? )
/.y~ feeyo||

Table 1 presents the ISNR values and the iterations numbers
for all the considered algorithms. They correspond to the mean
values of all deconvolution results from the image set used in the
simulation. Figure 1 and Figure 2 show typical visual results for
a phantom and for a real cell image restoration, respectively.

ISNR =10 '10g10
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Table 1 - ISNR for the 3D reconstructed images.

Algorithms RL TVRL | AT+RL | AT+TVRL
ISNR (dB) | 8.1582 | 8.6035 | 8.7384 | 8.9261
[terations 175 129 124 97

(a) (b) ()
(d) (e)

Figure 1 — (a) A section of a 3D phantom image; (b) blurred section in the axial direction (z-axis); (c) blurred and noisy section; (d) a section of the 3D restored image
using the TVRL algorithm; () a section of the 3D restored image using the AT+TVRL algorithm.

(@) (b) ()
Figure 2 — (a) A real cell image; (b) restored image using the TVRL algorithm; (c) restored image using the AT+TVRL algorithm.
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The stopping criteria in all simulations was the peak value
of the ISNR. From the results we can see that the noise reduc-
tion procedure as a preprocessing stage before applying the RL
(or TVRL) algorithm is able to improve the deconvolution process
following the ISNR criterion and the amount of contrast in the im-
ages. Moreover, best results are achieved with smaller iteration
numbers. One can observe that distinct results can be obtained
for different initial images. We have used the blurred and noisy
image as the initial estimate in all cases.

The main conclusion of this work is that results provided by
MLEM based algorithms derived under a Poisson noise model
can be improved by a noise reduction procedure. It is important
to note that after the optimal Anscombe inverse transformation
we have no information about the statistics of the residual noise.
However, the RL algorithm shows great robustness and also im-
proves the results.
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