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Abstract

The object of this work is to present an exact solution for the capacitated multiple allocation hub
location problem. In order to accelerate the search for solutions, the Local Branching (LB) technique was
employed. This technique is based on branch-and-cut methods and it also incorporates some ideas present
in local search and metaheuristics.
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1. Introduction

Transport companies are now facing the need to
better plan their freight routes, because the mere def-
inition of routes based on the source and target nodes
can considerably increase the cost of transportation.
The hub concept allows for a decrease in the total
network cost.

A hub can be regarded as a central or terminal
where cargo from different sources is aggregated to be
later transported from the common hub to their final
destination. Transport networks like this are called
hub-and-spoke. Figure 1 shows two examples of hub-
and-spoke networks. In the example on the left, each
client can only be allocated to a single hub while in
the example on the right a client can be allocated to
more than one hub.

The Hub Location Problem (HLP) in a network
consists in determining the number of consolidation
installations, the localization of each one of them, and
the allocation of the remaining network nodes (also
called spokes or demand nodes) to the hubs so as
to minimize the total cost of the operation, which
may include the variable cost of transport (collec-

tion, transfer, and distribution costs) and the fixed
costs for facility location. These facilities may be fac-
tories, harbors, retail outlets, routine or emergency
service points, post offices, waste incineration plants,
medical centers, airports, communication antennas,
schools, libraries among others (see [10], [3] and [5]).

Figure 1: Example of networks with single (left) and

multiple (right) allocation [6]

The HLP has several variations [1]. This paper
aims at solving the capacitated multiple allocation
HLP by using the Local Branching (LB) technique.
This can be considered one of the most important
problems due to its closeness to reality, and the use
of the LB technique poses a great challenge for not
having been used to solve hub location problems.
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2. Mathematical Model

One of the first mathematical models for capac-
itated multiple allocation hub localization problem
was proposed by Campbel [2]. However, in this study
the F-CMAHLP mathematical model proposed by

Every et al. [4] was used, which corresponds to the
model (1-6) below. This model was chosen because
it uses less variables and it has proven effective when
working with n values greater than forty without ex-
ceeding memory capacity:
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The variables in this model are defined as follows:

• Cij is the distance between nodes i and j;

• Y i
kl corresponds to the flow going through node
i via k and l hubs;

• whereas xilj determines the amount of flow orig-
inating at i and ending at j via the l hub;

• Hk is a decision variable that defines whether k
is a hub, Hk=1, or not, when Hk=0

• V is the set of network nodes;

• wij is the amount of flow transferred between i
and j nodes;

• λ, α, δ are, respectively, the collection, transfer,
and distribution costs

• fk corresponds to the fixed cost for open a hub
in k;

• And Qk corresponds to the maximum capacity
of hub k.

For the mathematical model (1-6) the objective
function (1) determines that the cost for hub location
and allocation must be the lowest possible, taking into
account the transportation costs and the fixed costs
for the hub location. Constraints (2) establish that
the sum of all installments from the flows originating
in i with destination in j via hub l must be equal to

the total flow from i to j (wij). Constraints (3) ensure
that the sum of the flows arriving at hub k do not ex-
ceed its maximum capacity. For constraints (4) it is
observed that the total sum of the flows arriving in l
must be less than or equal to the total flow associated
with the selected hub Hl. Constraints (5) ensure that
the total flow arriving at hub l must be equal to the
sum of all flows associated with hub l. Finally, con-
straints (6) define the integrality constraints of the
decision variables.

3. Local Branching Strategy

The Local Branching (LB) technique proposed by
Fischetti and Lodi [7] employs a commercial solver to
effectively explore (at a tactical level) suitable solu-
tion subspaces (at a strategic level) in a local branch
structure.

The procedure has the spirit of local search meta-
heuristics, but the neighborhoods are achieved by in-
serting local branching cuts in the integer program-
ming model that describes the problem. This solu-
tion strategy is inherently exact and it switches be-
tween strategic ramifications to set solution neigh-
borhoods and tactical ramifications to explore these
neighborhoods. The outcome is a completely general
scheme that anticipates improvements in incumbent
solutions, hence generating high-quality solutions in
the initial stages of the enumeration tree, thus reduc-
ing the computational time.

Consider the mathematical model (7-11) for com-
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binatorial optimization problems with binary vari-
ables:

F (x) = minCT x (7)

s.t. Ax ≥ b, (8)

Xi ∈ B, (9)

Xi ∈ Z+, (10)

Xi ∈ R+, (11)

A ∈ QM×N , b ∈ QM , c ∈ QN . (12)

The set of variables indices I: = 1, 2, 3, ..., n is
partitioned in the sets (B, Z, R), where B ∈ ∅ is the
set of indices of the binary variables and Z and R are
the sets of indexes of integer and continuous variables,
respectively.

The LB algorithm works with the concept of a fea-
sible solution neighborhood, defined as follows: given
a feasible solution x̄ for (7-12), S = {i ∈ B : x̄i = 1}
is defined as the binary support for x̄ [7]. Given a
parameter k specifies to the K-OPT neighborhood of
x̄ is defined, denoted by N(x̄, k) as the set of feasible
solutions that besides satisfying (8)-(12) also satisfy
the Local Branching constraint:

∆(x, x̄) =
∑
j∈S

(1− xj) +
∑

j∈B\S

xj ≤ k (13)

The Local Branching constraint can be used as
a branching criterion in a Branch-and-Bound (B&B)
enumeration scheme. Given a feasible solution x, the
solution space associated with the current node can
be partitioned into (i) ∆(x, x̄) 6 k (left branch) and
(ii) ∆(x, x̄) > k + 1 (right branch). The parame-
ter k must be chosen so that the search space of the
subproblem associated with the left bundle-branch is
large enough to contain the best feasible solution x
and at the same time small enough so that it is eas-
ier to be solved than the problem associated with its
father.

This constraint therefore requires that k is the
longest distance between viable neighbors. This Local
branching constraint may be used in an enumerative
method as a cramification criterion. Figure 2 shows
the basic idea of the LB technique. The method starts
the search from an initial reference solution and to
each level of the tree a new Local Branching con-
straint is added so that a solver can explore the solu-
tion neighborhoods present in each branch. The tree
adds local constraints as improvement occurs in the
current solutions.

Figure 2: Enumeration tree LB.

4. Proposed Methodology

The LB method presented depends on a good ini-
tial reference solution. In this work a Local Search
strategy capable of solving the capacitated hub loca-
tion problem so as to generate an initial solution was
developed. The local search method proposed, based
on the Hill Climbing method, is a local search tech-
nique that explores the solution space by means of
systematically switching between different neighbor-
hood structures. The methodology consists in the fol-
lowing: a randomly generated solution is subject to a
small disturbance, and if this movement generates an
improvement in the current solution, it is accepted.
The pseudocode is presented in Figure 3. A possi-
ble solution used by the Local Search (LS) method
corresponds to a vector formed by n2 positions, each
corresponding to a pair (source, destination), which
in turn is associated with a route (source-hub, desti-
nation hub).

Procedure Local Search
Let s0 be initial solution and r the number of neigh-
borhood structures
s ← s0 {Current solution}
k ← 1; {Type of neighborhood structure}
while (Stopping criterion not satisfied) do
Generate a neighboring any s’ ∈ N (s)
if ( f (s’) < f (s) )
then s ← s’;
k ← k + 1
End-if
End-while
Returne s
End-procedure

Figure 3: Hill climbing pseudocode.
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Figure 4 shows a possible solution for the prob-
lem, in which the number of network nodes is n = 5
and the number of hubs is p = 3. The positions of
vector V range from 0 to 24 to represent the possi-
ble combinations of source-destination pairs, and each
position can store a value from 0 to 8 to represent
all possible routes going from one hub to the other.
When analyzing the position 3 for vector V, for in-
stance, it is possible to notice that a freight leaving
the source-destination pair [3] = (1, 4) must be sent
via hubs [7] = (3, 2) by the following relationship:
source-destination [i] = ((i%n) + 1, (i div n) + 1) and
hubs [i] = ((v[i]%p) + 1, (v[i] div p) + 1), where %
represents the remainder and the div the integer di-
vision. Note that in the table of possible hubs k and
l represent the vector index of the chosen hubs. This
vector stores which points from 1 to n were chosen to
be hubs.

The implemented LB method initially generates
the hubs randomly and then associates each vector V
position to the route that goes via the nearest pair of
hubs according to the pseudocode presented in Figure
5. To calculate the cost Cijkm simply add the collec-
tion, transfer, and distribution costs multiplied by the
corresponding distance (Cijkm = λdik+αdkm+δdmj).

Figure 4: Representation of a solution N=5 e P=3.

After generating vector V with its allocation
routes from the nearest hubs, it goes through an eval-
uation function responsible for scoring the found so-

lution. This function yields the solution values ac-
cording to the object function. The only exception
happens when a generated solution exceeds the hub
flow capacity constraint, in which case the evaluation
function assigns a penalty so that this solution is dis-
carded in the method search process.

In order to develop the local search method four
neighborhoods were defined:

• Realocate Hub: chooses a non-hub node A
and a hub node B to make a switch, so that A
becomes a hub and B a non-hub node;

• Add Hub: this procedure adds a non-hub ele-
ment to the set of solution hubs;

• Delete Hub: chooses a hub from the set of so-
lution hubs to turn it into a non-hub element;

• Swap Route: randomly chooses two routes
from vector V and swaps them.

After moves 1, 2, or 3, all elements from vector
V are reallocated to the nearest hubs route; The de-
veloped LB method has the results from the local
search heuristic as an initial reference solution and
the LB local ramifications use the binary variable H
from model (1-6) proposed by Every et al. [4].

5. Results

The verification of the efficacy of the implemented
method was based on the AP data set [5]. The AP
(Australian Post) data set was proposed by Ernst and
Krishinamoorthy [5]. The values for the collection,
transfer, and distribution costs are 3, 0.75 and 2 re-
spectively. The tests were run on a Core 2-Duo PC
with 2 GB of RAM on a Linux operating system with
CPLEX 12. The k value of the local branching con-
straint was set at 30.

In this work, the time spent by the CPLEX and
the LB to find the optimal solutions was analyzed.
Table 1 contains the following columns:

• Test: describes the test instance used;

• Sol: indicates the solution found by the imple-
mented methods;

• TE: corresponds to the runtime of the algorithm
(in seconds) until the stop criterion is reached;

• Optimal: indicates the optimal solution found
in the literature;

• VAR: corresponds to the difference between the
CPLEX runtime and the LB runtime;
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• GapIni: displays the initial gap of the search for
solution;

• LS1: local search method one, used to generate

the initial solution for the CPLEX;

• LS2: local search method two, the reference so-
lution for LB.

Table 1: Results CPLEX x LB.

The difference between LS1 and LS2 is the stop-
ping criterion. 100,000 iterations were made for LS1
while 1,000 were made for LS2.

In order to obtain the results presented in Table 1,
both the CPLEX and the LB used the descent method
to generate an initial solution. From the test results
it is possible to identify that there was a reduction of
the runtime in 80% of the cases.

6. Conclusions

The capacitated hub location problem is a rele-
vant Combinatorial Optimization problem as it oc-
curs in several practical situations where transport
of some entity (people, data, goods, etc.) must un-
dergo an aggregation process before being distributed
to its destination. Good solutions for this problem
may pose significant economic gains for several busi-
ness sectors.

The HLP is known to be NP-hard class [8] and
exact algorithms to determine the optimal solution
to this problem are a major challenge since they re-
quire methods that demand great computational ef-
fort, which may be impractical for large scale prob-
lems.

Nevertheless, studies and tests conducted with the
Local Branching (LB) technique have shown consid-

erable ability (have yielded good results) in the re-
duction of search time for optimal solutions. It was
also observed that, in smaller instances, during Local
search heuristic it generated near-optimal solutions.

During the test runs it was observed that the main
difficulty identified by the proposed method was to re-
duce the time to prove that the found solution was
optimal.
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